Introduction

- The 2018 NAPA's nationwide survey on recycled asphalt mixtures found 77% of state asphalt paving associations felt "there was room to increase the use of RAP materials";
- Softening oils are used to offset the effects of oxidative aging of recycled binder, thereby allowing higher contents of RAP to be used;
- While the state agencies and contractors have risen a concern of pavement performance of high RAP mixtures due to limited understanding of long-term service of the high RAP mixtures that utilizes the softening oils.

Objectives

MODIFIED

ASPHALT

CENTER

RESEARCH

MARC

- To investigate the rutting resistance and cracking resistance of 30%RAP and 50%RAP mixtures with three types of softening oils at various aging levels;
- To compare the effects of pre-blending softening oils into asphalt binder and spraying softening oils on the RAP prior to the mixing.

Materials

Factor	Level	Explanation		
Mixture type	3	Virgin Mix	30%JMF RAP	50%JMF RAP
Virgin binder	1	PG 58-28S		
Percent binder replacement	2	NA	27.0%	45.0%
Total AC,%	1	5.50		
Recycling agent type	3	NA	REOB; Bio-Oil#1; Bio-Oil#2	
Recycling agent dose	2	NA	REOB-5.0%; Bio-Oils-3.0%	REOB-10.0%; Bio-Oils-5.0%
Aging condition	3	Short-Term Oven Aging (STOA: 4 h at 135 °C); Long-Term Oven Aging (LTOA: 8 h at 135 °C and 16 h at 135 °C)		

TRBAM-21-00116: Extended Aging Performance Of High RAP Mixtures and The Role of Softening Oils

Yuan Zhang • Hui Chen• Hussain U. Bahia

Methods

perature range	Selected testing method	Sample aging condition	Response parameter
gh temp.	Hamburg Wheel-Track Test (HWTT) AASHTO T 324	STOA	Passes to rut depth 12.5 mm; creep slope
rmediate temp.	Indirect Tensile Cracking Test (IDEAL-CT) ASTM D 8225	STOA; LTOA-8h; LTOA-16h	CTindex; Fracture Energy; Post-Peak Slope
w temp.	Modified IDEAL-CT (0.5 mm/min at 0 °C)	STOA; LTOA-8h; LTOA-16h	CTindex

Rutting Resistance

ം 30 2

Ù

11² (1000) at 25 2 5000

Cracking Resistance of High RAP Mixtures

CTindex @25°C of 30%RAP Mixtures

CTindex @25°C of 50%RAP Mixtures

Fracture Energy VS. Post-Peak Slope

Comparison between Two Oil Applying Methods

CTindex @0°C of 30%RAP and 50%RAP Mixtures

Main Findings

Using proper dose of softening oils in high RAP mixtures are not expected to increase rutting relative to the virgin mixture.

The addition of softening oils produced the CTindex at 25 °C similar and at times higher than an equivalent virgin mixture for the three levels of mixture aging.

A minimum value of Fracture Energy and a maximum of absolute value of the Post-Peak Slope could be more effective as performance criteria for cracking and aging resistance.

The addition of softening oils increased the CTindex at 0 °C of all RAP mixtures after the STOA and LTOA conditioning.

The practical significance of the oil applying method resulted in marginal differences in the CTindex. Pre-blending of the softening oils in the binder is preferred.